Emenda de Kigali do Protocolo de Montreal e seu Impacto na Seleção de Fluidos Refrigerantes

Roberto A. Peixoto IMT UNEP RTOC/TEAP

Tópicos

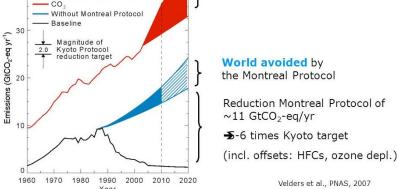
- Emenda de Kigali do Protocolo de Montreal
- Situação atual e impactos da implementação da Emenda de Kigali
- Impacto na seleção de fluidos refrigerantes
- Alternativas e tendências: ar refrigeração comercial
- Observações finais

Disclaimer: As opiniões expressas são do autor e não representam as do TEAP ou do RTOC

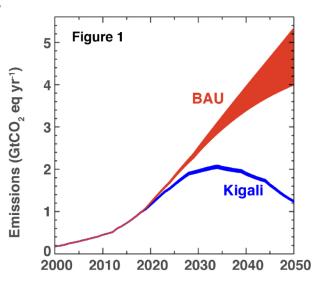
Dia Internacional para a Preservação da Camada de Ozônio

- 16 de setembro foi estabelecido pelo Programa das Nações Unidas para o Meio Ambiente (PNUMA, UNEP na sigla em inglês) como o Dia Internacional para a Preservação da Camada de Ozônio
- Protocolo de Montreal em 1987 tornou-se o primeiro tratado das Nações Unidas sobre meio ambiente a ser ratificado globalmente e foi subscrito por 197 países do mundo.
- É um acordo pioneiro e de sucesso que estabeleceu a eliminação de diversas substâncias destruidoras de ozônio (SDOs).
- Quais foram as razões para este sucesso? E por que nos dias de hoje estas razões devem ser lembradas e celebradas?

Emenda de Kigali do Protocolo de Montreal


Fundamentos

- CFC e HCFC s\u00e3o potentes gases de efeito estufa
- O Protocolo de Montreal teve uma enorme contribuição para a proteção do clima
- Cinco vezes a meta de redução anual do Protocolo de Kyoto para o período 2008-2012

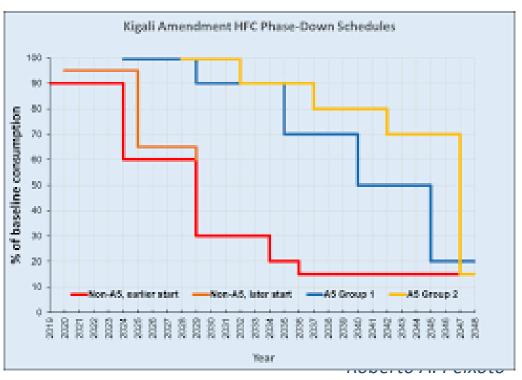


Large climate benefits Montreal Protocol

Por que a Emenda Kigali?

- Oportunidade de reduzir as emissões de gases de efeito estufa, aproveitando a estrutura do Protocolo de Montreal.
- Grandes impactos (evitar o aumento de 0,5 ° C em 2100).
- Impacto comprovado do Protocolo de Montreal.
- Conhecimento dos setores de consumo.
- Ratificação universal.
- Estruturas nacionais (por exemplo, OTOZ).

Roberto A. Peixoto


O que é a Emenda Kigali?

- Modificação do Protocolo de Montreal para reduzir o consumo de hidrofluorcarbonetos (HFCs).
- Agora listado no Anexo F.
- Acordado em Kigali, Ruanda, em outubro de 2016.
- Entrou em vigor em 1 de janeiro de 2019.
- Até maio 2020, foi ratificado por 94 países mais a União Europeia.

	HFCs (Gro	up I)	HCFCs		
	Substance	GWP value (100 year)	Substance	GWP value (100 year)	
	HFC-134	1100	HCFC-21	151	
	HFC-134a	1430	HCFC-22	1810	
	HFC-143	353	HCFC-123	77	
	HFC-245fa	1030	HCFC-124	609	
	HFC-365mfc	794	HCFC-141b	725	
	HFC-227ea	3220	HCFC-142b	2310	
	HFC-236cb	1340	HCFC-225ca	122	
	HFC-236ea	1370	HCFC-225cb	595	
	HFC-236fa	9810			
,	HFC-245ca	693	CFCs		
	HFC-43-10mee	1640	Substance	GWP value	
	HFC-32	675	CFC-11	4750	
	HFC-125	3500	CFC-12	10 900	
	HFC-143a	4470	CFC-113	6130	
	HFC-41	92	CFC-114	10 000	
	HFC-152	53	CFC-115	7370	
	HFC-152a	124			
	HFCs (Gro	up II)			
	HFC-23	14 800			

Emenda Kigali

	AS Parties Group 1	AS Parties Group 2*	Most Non-AS Parties	Some Non-A5 Parties**
Baseline	2020-2022	2024-2026	2011-2013	2011-2013
HFC Formula	Average	Average	Average HFC	Average HFC
HCFC Formula	65% of baseline	65% of baseline	15% of baseline	25%
Freeze	2024	2028		
1 st Step	2029 - 10%	2032 - 10%	2019 - 10%	2020 - 5%
2 rd Step	2035 - 30%	2037 - 20%	2024 - 40%	2025 - 35%
3rd Step	2040 - 50%	2042 - 30%	2029 - 70%	2029 - 70%
4th Step			2034 - 80%	2034 - 80%
Last Scheduled Step	2045 - 80%	2047 - 85%	2036 - 85%	2036 - 85%

Situação Atual

- Diversos governos ratificaram a emenda, até maio passado, 94 países mais a União Europeia.
- Diversos países importantes, como EUA e Brasil ainda não ratificaram a emenda.
- Alguns organismos internacionais como o K-CEP (Kigali Cooling Efficiency Program), com suporte de doações filantrópicas, estão apoiando ações de redução/eliminação de HFCs de alto GWP.

Situação Atual

- Uma das ações é o apoio a países em desenvolvimento para a elaboração de "National Cooling Plans" visando definir um plano, uma estratégia para países buscarem um setor de ref. e ar condicionado (RAC) sustentável com redução/eliminação de HFCs junto com eficiência energética.
- Países realizam inventários de emissões de HFCs, para informar à UNFCCC.

Impactos

- Vários países estão ratificando a emenda e participando ativamente das discussões no âmbito do Protocolo de Montreal para definir como vai ser o apoio do Fundo Multilateral para projetos de implementação da Emenda de Kigali
- Problema : "Conflito" com a eliminação dos HCFCs

Impactos

- Regras internacionais sobre uso de refrigerantes (restrições, políticas, etc.) com a emenda Kigali ficaram claras
- Indústrias fabricantes de refrigerantes e equipamentos de RAC estão se movendo com mais determinação nos testes, protótipos e disponibilização comercial de produtos
- A União Europeia está bem mais avançada que a emenda de Kigali.
 Sua legislação (*F-Gas Regulation*) é mais restritiva em termos de eliminação de HFCs que Kigali.

Sector	CFCs	HCFCs	HFCs Pure & Blends	HCs	CO2 Ammonia	Unsaturated HFCs (HFOs) Pure	Blends with Unsaturated HFCs (HFOs)
Domestic Refrigeration	CFC-12		HFC-134a	HC-600a	Ammonia	HFC-1234yf	R-450A, R-513A,
Commercial	CFC-12	HCFC-22	HFC-134a	HC-600a	CO2	HFC-1234yf	R-450A, R-448A, R-444B, R-442A,
Refrigeration (SA, CU, CS)	R-502		R-404A R-407A R-407F	HC-290	Ammonia	HFC-1234ze(E)	R-455A, R-450A, R-513A, R-448A, R-449B,
Transport Refrigeration		HCFC-22	HFC-134a R-410A R-407C	HC-290 HC-1270	CO2	HFC-1234yf	R-450A, R-448A, R-444B, R-455A, R-446A, R-447A, R-447B, R-448A, R-449A R-450A, R-
			K-407C				513A,
Industrial refrigeration		HCFC-22	HCFC-22 HCFC-123	HC-1270 HC-290	Ammonia CO2	HFC-1234yf	R-450A, "L-40", R-444B, R-455A, R-446A, R-447A, R- 447B,R-450A, "XP-10", R-448A, R- 449A,
Water heating heat pumps		HCFC-22	HCFO- 1233zd(E)	HC-290 HC- 600a	CO2 Ammonia	HFC-1234yf HFC-1234ze(E)	R-450A, "L-40", R-444B, R-455A, R-446A, R-447A, R-447B, R-450A, R-513A, R-448A, R-449A,
Air Conditioners	CFC-12	HCFC-22	HFC-134a HFC- 32 R-410A R-407C	HC-290	CO2	HFC-1234yf	R-450A, "L-40", R-444B, R-455A, R-446A, R-447A, R-447B, R-450A, R-513A, R-448A, R-449A,
Chillers	CFC-12 CFC-11	HCFC-22 HCFC-123 HCFO- 1233zd(E)	HFC-134a R-404A R-410A R-407C	HC-290 HC- 1270	Ammonia CO2	HFC-1234yf HFC-1234ze(E) HFO- 1336mzz(Z)	R-450A, "L-40", R-444B, R-455A, R-446A, R-447A, R-447B, R-450A, R-513A, R-448A, R-449A,
Mobile Air Conditioner	CFC-12		HFC-134a R-410A R-407C		CO2	HFC-1234yf	R-450A, R-513A

Historical use

Current use on a commercial-scale

Potentially feasible or limited use, and for demonstration, trials, niche applications, etc

Alternativas para Equipamentos de Condicionamento de Ar

- Nos países A5, muitos ACs ainda são produzidos usando HCFC 22.
- Com a adoção da tecnologia de inversor para atender aos Padrões de Desempenho de Eficiência Mínima (MEPS), os países do Artigo 5 estão se afastando rapidamente do HCFC e adotando alternativas.
- Além disso, a introdução generalizada de HFC-32 em unidades residenciais slplit continua em muitos países ao redor do mundo.
- A eficiência faz parte dos critérios de seleção para refrigerantes com menor GWP, como um importante acompanhamento do acordo de Kigali.

Alternativas para Equipamentos de Condicionamento de Ar

- Após a avaliação, muitas empresas estão progredindo para aplicar várias misturas de HFCs, HFOs, HCFOs, HFOs e misturas de "HFC / HFO" em produtos AC
- Em alguns casos, um fluoro-iodocarbono (IFC) é usado.
- Conversões de linhas de produção para HC-290 na China, Sudeste Asiático e América do Sul estão em andamento e (exceto para unidades pequenas e portáteis) há introdução limitada no mercado, devido a requisitos restritivos de padrões de segurança.
- Na Índia, a expansão da produção a adoção de condicionadores de ar split HC-290 continua a aumentar continua, principalmente por um fabricante nacional.

Alternativas para Refrigeração Comercial

Equipamentos "Self Contained"

- Fabricação de equipamentos plug-in (displays, vending machines, balcões...) com hidrocarbonetos estão aumentando,
- Impacto da Emenda de Kigali e aumento da carga máxima de refrigerantes de hidrocarbonetos para 500g (norma ISO abril de 2019)
- Aumento nos limites de carga para refrigerantes inflamáveis até cerca de 500 g para A3 e até 1.200 g para refrigerantes A2 e A2L.
- Cargas >150 g podem ser usadas, desde que o aparelho passe por um "teste de concentração circundante".
- Misturas de HFO com baixo GWP (classificação A1 / A2L) também estão sendo aplicadas em sistemas comerciais de carga menor.

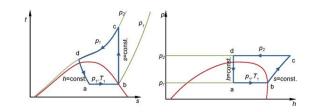
Situação na Europa

- A implementação do regulamento F-gas na Europa está em andamento, com refrigerantes como R-744 e HC-290 (e em menor extensão R-717) ganhando aceitação crescente em aplicações comerciais.
- A partir de janeiro de 2020, refrigeradores e freezers para uso comercial que contenham HFCs com um GWP de 2500 ou maior foram retirados do mercado.
- Esta etapa prepara o cenário para janeiro de 2022, onde os produtos com HFCs com um GWP de 150 ou mais serão removidos.

Alternativas para Refrigeração Comercial

Supermercados

- Substituição do R-404A e HCFC-22: Misturas não inflamáveis GWP menor que 2000 tendem a crescer o uso, tanto nos sistemas existentes quanto nos novos.
- Misturas HFC/HFO com baixo GWP, operando em cascata com o R-744 na baixa temperatura: R-448A, R-449A, R-452A e R-407H e para subst. do HFC-134a: R-450A e R-513A
- HC-290 e HC-1270: foram introduzidos nos supermercados, usando um circuito secundário. O HC-290 é agora a opção preferida. O número desses sistemas HC é limitado; estratégias de redução de carga podem ajudar a aumentar o número de sistemas com esses refrigerantes.
- R-717. Devido à sua toxicidade, o R-717 é confinado em uma sala de máquinas ventilada e os sistemas R-717 são sempre projetados com loops secundários em cada nível de temperatura. O R-717 pode ser usado em sistemas indiretos no nível de temperatura média, em cascata junto com o R-744 no nível de baixa temperatura.



Fonte: Carrie

Alternativas para Refrigeração Comercial

misturas HFOs....

Supermercados R-744

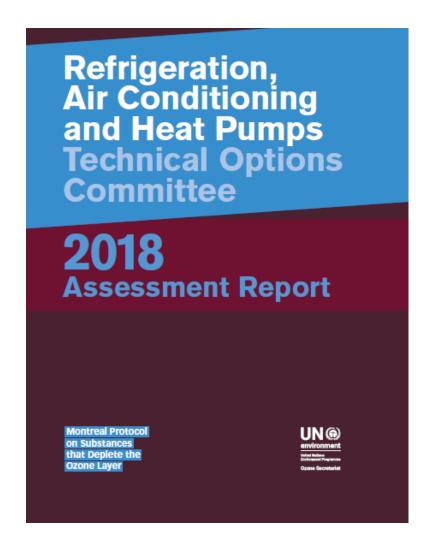
2005 duas grandes novas opções: o R-744 como o único refrigerante em sistemas booster e o R-744 em cascata com HFCs ou outros refrigerantes.

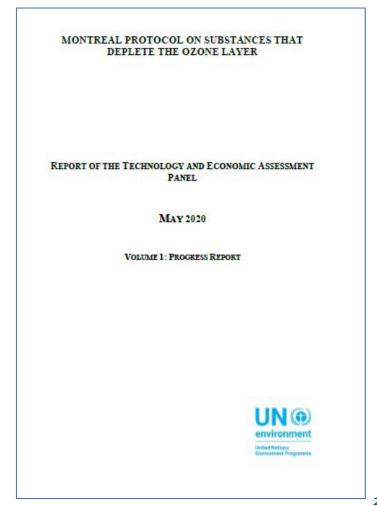
- R-744 como o único refrigerante em supermercados: sistemas de booster transcrítico (cerca de 19.000 sistemas transcríticos R-744 instalados, principalmente na Europa > 70%)
- Custo dos sistemas foi significativamente reduzido e agora eles competem com os sistemas HFC.

Os sistemas de booster transcrítico básico R-744 são menos eficientes que os sistemas HFC para T>26 °C,

Em sistemas em cascata, o R-744 opera apenas no nível de baixa temperatura. O rack de compressor de temperatura média funciona por ex. com HFC-134a ou R-717, HC-290, ou

- Métodos como sub-resfriamento mecânico, ejetores, injeção de vapor e compressão paralela, estão sendo usados para melhorar o desempenho.
- Esses conceitos permitem uma operação com eficiência de energia também em condições de temperatura ambiente mais alta e vários sistemas foram implementados recentemente em climas quentes


- A Emenda Kigali reforçou o movimento em direção a aplicações que usam refrigerantes de baixo GWP e espera-se que acelere a inovação para tecnologias RACHP sustentáveis.
- No que se refere a refrigerantes com GWP na faixa de 0-5, hidrocarbonetos (HCs), dióxido de carbono (R-744), amônia (R-717) e Hidro-Fluoro-Olefina (HFOs), todos estão aumentando nas várias Refrigerações, Setores de Ar Condicionado e Bomba de Calor (RACHP).
- Isso está ocorrendo em paralelo com a redução gradual de HFCs de alto PAG em muitos países por meio do uso de alternativas com PAG acima de 300 em algumas aplicações.


- Embora quase todas as alternativas de baixo GWP sejam inflamáveis, houve um progresso significativo no desenvolvimento de padrões de segurança.
- IEC 60335-2-89 (refrigeração comercial) foi revisado para incluir cargas maiores de inflamáveis; agora está sendo transferido para os padrões nacionais.
- Um trabalho substancial está em andamento na IEC 60335-2-40 (AC e HP), particularmente para aumentar os tamanhos de carga do equipamento para refrigerantes A3, A2 e A2L.

- É provável que haja apenas uma quantidade muito limitada de misturas de HFC-HFO no futuro
- Não se pode presumir que o setor de serviços pode operar com um grande número de combinações de HFC / HFO.
- Atualmente, inúmeras atividades de pesquisa estão investigando uma variedade de aspectos relacionados à aplicação de refrigerantes inflamáveis em equipamentos de ar condicionado.

 Voltando a nossa questão inicial. Por que esta história de sucesso ocorreu? Os principais motivos para o sucesso deste acordo foram a confiança no conhecimento científico e na colaboração global.

Fontes de Informação

23

Disponível em:

Obrigado pela atenção

robertopeixoto@maua.br

UNEP Technical Options Committee Refrigeration, AC and Heat Pumps

INSTITUTO MAUÁ DE TECNOLOGIA-IMT